GABAB receptor subtypes differentially modulate synaptic inhibition in the dentate gyrus to enhance granule cell output.

نویسندگان

  • Joshua D Foster
  • Ian Kitchen
  • Bernhard Bettler
  • Ying Chen
چکیده

BACKGROUND AND PURPOSE Activation of GABAB receptors in the dentate gyrus (DG) enhances granule cell (GC) activity by reducing synaptic inhibition imposed by hilar interneurons. This disinhibitory action facilitates signal transfer from the perforant path to the hippocampus. However, as the two main molecular subtypes, GABA(B(1a,2)) and GABA(B(1b,2)) receptors, prefer axonal terminal and dendritic compartments, respectively, they may modulate the hilar pathways at different synaptic localizations. We examined their relative expression and functions in the DG. EXPERIMENTAL APPROACH The localization of GABAB subtypes was revealed immunohistochemically using subunit-selective antibodies in GABA(B1a)(-/-) and GABA(B1b)(-/-) mice. Effects of subtype activation by the GABAB receptor agonist, baclofen, were examined on the perforant path-stimulated GC population activities in brain slices. KEY RESULTS GABA(B(1a,2)) receptors were concentrated in the inner molecular layer, the neuropil of the hilus and hilar neurons at the border zone; while GABA(B(1b,2)) receptors dominated the outer molecular layer and hilar neurons in the deep layer, showing their differential localization on GC dendrite and in the hilus. Baclofen enhanced the GC population spike to a larger extent in the GABA(B1b)(-/-) mice, demonstrating exclusively disinhibitory roles of the GABA(B(1a,2)) receptors. Conversely, in the GABA(B1a)(-/-) mice baclofen not only enhanced but also inhibited the population spike during GABAA blockade, revealing both disinhibitory and inhibitory effects of GABA(B(1b,2)) receptors. CONCLUSIONS AND IMPLICATIONS The GABA(B(1a,2)) and GABA(B(1b,2)) receptor subtypes differentially modulate GC outputs via selective axonal terminal and dendritic locations in the hilar pathways. The GABA(B(1a,2)) receptors exclusively mediate disinhibition, thereby playing a greater role in gating signal transfer for hippocampal spatial and pattern learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monoamine modulation of the synaptic inhibition in the hippocampus.

Changes in the strength of synaptic inhibition have profound effects on the functions of cortical neurones. Accumulating evidence suggests that inhibitory synaptic transmission may be the target of actions of monoamines. In the hippocampal dentate gyrus, norepinephrine and serotonin (5-HT) have multiple direct and indirect actions on the presumed inhibitory hilar neurones. These effects are med...

متن کامل

Effect of Clenbuterol Administration into the Basolateral Amygdala on Synaptic Plasticity in Dentate Gyrus Granule Cells in Male Rats

 Background and purpose: Neural circuits and neurotransmitter systems within the basolateral amygdala (BLA) play roles in forming emotional memory through communication with the hippocampus. Therefore, in this study, the role of these neural circuits on synaptic plasticity was investigated by agonist injection of beta-adrenergic receptors into the BLA. Materials and methods: In this experiment...

متن کامل

Repeated administration of cannabinoid receptor agonist and antagonist impairs short and long term plasticity of rat’s dentate gyrus in vivo

Introduction: The effects of cannabinoids (CBs) on synaptic plasticity of hippocampal dentate gyrus neurons have been shown in numerous studies. However, the effect of repeated exposure to cannabinoids on hippocampal function is not fully understood. In this study, using field potential recording, we investigated the effect of repeated administration of the nonselective CB receptor agonist WIN5...

متن کامل

Orphanin FQ/nociceptin inhibits synaptic transmission and long-term potentiation in rat dentate gyrus through postsynaptic mechanisms.

Orphanin FQ/nociceptin (OFQ), a recently characterized natural ligand for the opioid receptor-like 1 (ORL1) receptor, shares structural similarity to the endogenous opioids. Our previous study found that OFQ, like classical opioids, modulated synaptic transmission and long-term potentiation (LTP) in the hippocampal CA1 region, suggesting a modulatory role for OFQ in synaptic plasticity involved...

متن کامل

Complexity of Epileptiform Activity in a Neuronal Network and Pharmacological Intervention

Neuronal outputs are complex signals of dynamically integrated excitatory and inhibitory components. Decreased synaptic inhibition in a neuronal network increases excitability and multiple spiking in neurons. Synchronized multiple spiking among a neuronal population further generates rhythmic field potentials and this epileptiform activity can propagate in the brain and cause seizures. Pharmaco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • British journal of pharmacology

دوره 168 8  شماره 

صفحات  -

تاریخ انتشار 2013